User name:

MATH3503 Online Assignment 7

Trigonometric Integration

Integration using trigonometric identities

Compute the following integrals.
  1. \(\displaystyle\int_{-\pi/4}^{\pi/4} \cos^3(11x)\,dx=\)

  2. \(\displaystyle\int_{0}^{0.5} \sin^4(3x)\,dx=\)

  3. \(\displaystyle\int_{0}^{0.2} \sin^2(7x)\cos^3(7x)\,dx=\)

  4. \(\displaystyle\int_{-0.5}^{0} \sin^3(3x)\cos^{11}(3x)\,dx=\)

  5. \(\displaystyle\int_{0}^{0.5} \sin^{6}(3x)\,dx=\)
    * Use the reduction formula and the result of Question 2.

    Trigonometric Substitution

  6. \(\displaystyle\int_{0}^{8/5} \sqrt{64-25x^2\ }\,dx=\)

  7. \(\displaystyle\int_{0}^{2} \frac{x^3\,dx}{\sqrt{4-x^2\,}}\,=\)

  8. \(\displaystyle\int_{-7}^{7} \frac{dx}{\sqrt{x^2 + 4\,}}\,=\)
    * Hint: \(\displaystyle\int \sec\theta d\theta = \ln |\sec\theta+\tan\theta|+C\), and \(\sec^{-1}x = \cos^{-1}(\frac{1}{x})\).

  9. \(\displaystyle\int_{7}^{14} \frac{dx}{x\sqrt{x^2 - 49\,}}\,=\)

  10. \(\displaystyle\int_{-7}^{0} \frac{dx}{\sqrt{x^2 + 14x+50\,}}\,=\)
    * Hint: Complete the square, i.e., \(x^2+ax+b = (x+\frac{a}{2})^2 + b - \frac{a^2}{4}\).


0 marks out of 10 (0%)  Keep trying until you get 100%!

If you are ready to submit the result, click   *Make sure that all questions are evaluated. Click "Check answers!" before clicking "Submit!".


Your current marks (only the highest marks are shown.)
AssignmentMark

©Takashi_Nakamura@bcit.ca