User name:

MATH3503 Online Assignment 8

Partial Fractions

Compute the following integrals using partial fraction decomposition.
  1. \(\displaystyle\int\frac{3}{x^2+16x+63}\,dx= \ln \left(\rule{0pt}{15pt}\right.\)\(\left.\rule{0pt}{15pt}\right) + C\)
    * Assume `x>0`.
      Hint: \(\log(AB) = \log A + \log B,~~ \log(A/B) = \log A - \log B,~~ k\log A = \log(A^k)\)

  2. \(\displaystyle\int\frac{7x+8}{x^2-14x+45}\,dx=\) \( + C\)
    * Use abs(x) for `|x|`.

  3. \(\displaystyle\int\frac{x^2+5x+25}{(x^2-81)(x+1)}\,dx=\) \( + C\)
    * Hint: Factor the denominator.

  4. \(\displaystyle\int\frac{6x^2+3x+36}{(x^2+4)(x-1)}\,dx=\) \( + C\)
    * Hint: The denominator is already fully factored.

    Improper Integrals

  5. \(\displaystyle\int_{0}^{\infty}x\, e^{-x^2/8}\,dx=\)

  6. \(\displaystyle\int_{1}^{\infty}\frac{dx}{x^7}=\)

  7. \(\displaystyle\int_{-\infty}^{\infty} \frac{dx}{x^2 + 49}\,=\)
    * Hint: Use substitution \(x=a\tan\theta\). Note that \(\tan(\pm\pi/2)=\pm\infty\).


0 marks out of 7 (0%)  Keep trying until you get 100%!

If you are ready to submit the result, click   *Make sure that all questions are evaluated. Click "Check answers!" before clicking "Submit!".


Your current marks (only the highest marks are shown.)
AssignmentMark

©Takashi_Nakamura@bcit.ca